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Minimum energy state of the one-dimensional Coulomb chain

Daniel H. E. Dubin
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

~Received 17 October 1996!

One-dimensional chains of laser-cooled ions have recently been confined in the fields of electromagnetic
traps. This paper considers the minimum energy states of this one-dimensional~1D! form of condensed matter.
Molecular dynamics simulations of the minimum energy states are compared to a density functional theory of
the inhomogeneous crystal. Unlike 2D and 3D inhomogeneous Coulombic systems, where mean-field theory
works well in describing the overall density variation on scales large compared to an interparticle spacing, we
show that correlations are essential in determining the density of the 1D Coulomb chain. On the other hand, the
long-range interactions that contribute to the mean field must also be kept.@S1063-651X~97!02204-6#

PACS number~s!: 64.70.2p, 61.50.2f
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I. INTRODUCTION

The one-dimensional Coulomb chain is a form of co
densed matter that consists of charges of like sign trap
along a linear axis through the application of strong exter
focusing fields. One-dimensional~1D! Coulomb chains con-
sisting of up to several dozen ions have recently been cre
in experiments@1,2#. Interparticle separations, on the order
micrometers, are sufficiently large so that a classical desc
tion of the dynamics is valid in most experiments. The 1
chain has been suggested as an advantageous configu
for a novel type of atomic clock@3,4#, as well as for quantum
computer schemes@5#.

In this paper we consider the equilibrium properties of
1D Coulomb chain. We focus on the zero-temperature c
sical limit, where the particles are trapped at equilibriu
positions along the chain axis. This limit has been a
proached in experiments by application of laser cooling. T
equilibrium positions are determined by force balance
tween the mutual Coulomb repulsion of the like-sign char
and the external focusing fields. For a finite length ch
confined by some external potentialfe(z), the interparticle
spacing varies with positionz along the chain. In this pape
we devise a theory that explains this variation.

These 1D inhomogeneous crystals have a unique prop
that distinguishes them from other common forms of co
densed matter: correlation energy and mean-field energy
of the same order of magnitude; neither can be negle
when determining the equilibrium. Neglecting correlations
equivalent to replacing theN charges by a charged mea
field fluid ~the correlation energy is the extra energy asso
ated with the discreteness of the individual charges, and
energy is neglected in the mean-field approximation!. How-
ever, the energy of a uniform line charge is infinite: there
no mean-field approximation for the 1D Coulomb chain.
order to obtain a finite energy the discreteness of the in
vidual charges must be taken into account, so one ca
neglect correlations.

To see this another way, note that the energy o
D-dimensional Coulombic system of sizeL scales roughly as
q2N2/L. This estimate follows from considering long-rang
interactions between particles separated by a distance o
der L; there are roughlyN2 pairs of such particles. On th
551063-651X/97/55~4!/4017~12!/$10.00
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other hand, correlation energy scales asNq2/a5q2N111/D/L
wherea5(LD/N)1/D is the average interparticle spacing. F
a system of dimensionD.1 andN@1 one can see that th
correlation energy makes a relatively small contribution
the energy is dominated by long-range interactions~i.e., the
mean field!. This is the familiar case in plasma physics—t
density variation of an inhomogeneous 2D or 3D plasma
determined almost entirely by the mean field, with corre
tions affecting the density only on scales of order the int
particle spacing. However, for dimensionD51 the correla-
tion energy is of the same order as the mean-field ene
arising from long-range interactions; neither can be
glected. We will see that for 1D Coulomb chains the cor
lations influence the density on all scales up to the sys
size.

This argument can be generalized to potentials other t
Coulombic. For example, for potentials which are of inver
power form 1/r n at long range, the analogous argume
shows that correlation energy dominates over the mean-
energy arising from long-range interactions whenD,n,
whereas mean-field energy dominates over correlation
the opposite caseD.n. In three dimensions mean-field en
ergy and correlation energy are of the same order whenn53.
Seen in this light, this paper can be regarded as a spe
example of the more general problem of determining eq
librium properties when both correlations and mean-field
fects are equally important, applied to the physically int
esting case of Coulomb interactions in one dimension.

We will account for correlations using a one-dimension
version of the local density approximation~LDA ! @6#. In the
LDA one approximates the correlation energy of the inh
mogeneous system by an integral over the correlation en
of a homogeneous system. The approximation works w
when the number of chargesN is large and the interparticle
spacing varies slowly with position.

In Sec. II we develop a general expression for the ene
of a Coulomb chain as a functional of the chain densityn(z),
i.e., the number of particles per unit length~the inverse of the
interparticle spacing!. In Sec. III we minimize this functiona
in order to determine the energy of the chain and the den
as a function of positionz. The results are compared to mo
lecular dynamics simulations of the 1D chain. An asympto
expression for the density of the chain is derived, valid
4017 © 1997 The American Physical Society
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4018 55DANIEL H. E. DUBIN
large N. The lowest-order asymptotic form applies ev
when surrounding conductors are present, and shows
image charges have only a small effect on the chain den
In Sec. IV we examine the approximations inherent in
LDA and consider an improvement to the LDA called t
square-gradient approximation. In Sec. V we discuss our
sults.

II. LOCAL DENSITY APPROXIMATION

Consider a collection ofN like charges, confined alon
thez axis at positionszi , i51,...,N, by an external potentia
fe(z).

Note that we need not specify the form offe as a function
of the transverse coordinatesx andy; symmetry implies that
only thez dependence offe is needed when considering th
chain equilibrium.~We say nothing here concerning stabili
of this equilibrium to transverse motions; see Refs.@7,8# for
a discussion of stability.! The potential energy of this system
is

E5(
i. j

N

q2G~zi ,zj !1(
i
qfe~zi !, ~1!

whereG(zizj ) is the Green’s function for the electrostat
potential ~multiplied by 24p! including the effects of sur-
rounding conductors, if any. The equilibrium positions c
be determined by minimization ofE with respect to thezi ’s,
which can be easily performed numerically provided thatN
is not too large. Some results are displayed in Fig. 1, negl
ing image charge effects so thatG51/uzi2zj u, and choosing
for the external potential a quadratic well:

qfe~z!5 1
2mv2z2, ~2!

wherem is the mass of a charge andv is the oscillation
frequency associated with the potential.

Two observations are immediately apparent: the Coulo
chains depicted in Fig. 1 are inhomogeneous; that is,
interparticle spacinga depends on position; and this depe
dence is smooth as a function ofz.

We define the interparticle spacinga( ẑi) at positions

ẑi5
zi1zi11

2
~3!

FIG. 1. Coulomb chains confined by a quadratic potential
different values of the particle numberN. The positionz of each ion
is scaled to (q2/mv2)1/3.
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a~ ẑi !5zi112zi . ~4!

The inverse of this function,

n~ ẑi !5a21~ ẑi !, ~5!

is the density of particles per unit length along the Coulo
chain. Figure 2 indicates that this density displays a smo
dependence onz. In Fig. 2 we have actually plottedn(zi),
rather thann( ẑi) wheren(zi) is determined by interpolation
of n( ẑi). ~Plotting the density evaluated at the actual parti
positions gives one a better feel for the actual length of
chain.!

One goal of this section will be to attain some analy
understanding of how the densityn(z) varies. We will con-
struct an approximate expression for the energyE of the
system that depends onn(z). Functional minimization ofE
with respect ton(z) then will determine how the densit
varies.

For example, the term involving the external potential c
be approximated by an integral overn(z) whenN is large
andn(z) varies slowly:

Fe5(
i51

N

qfe~zi !.qE
2`

`

dz n~z!fe~z!. ~6!

Fe[n] is a functional ofn(z) that determines the potentia
energy due to the external potential.

We also require an integral expression for the Coulo
self-energyS i. jq

2G(zi ,zj ). To this end, consider the self
potential-energyF of a globule of uniform fluid with density
r(r ,z), chosen such that

r~r ,z!5 H r0 ,
0,

r,r 0~z!

r.r 0~z!
~7!

r

FIG. 2. Density per unit length,n, as a function of positionz.
Dots:n(zi) determined by MD simulation, wherezi is the position
of the i th charge. Lines: method of trial variational function
Dashed lines: one-parameter function@Eq. ~23!#; solid lines: two-
parameter function@Eq. ~27!#. Both z and n(z) scaled to
(q2/mv2)1/3.
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55 4019MINIMUM ENERGY STATE OF THE ONE-DIMENSIONAL . . .
wherer0 is a constant density. The radiusr 0(z) and density
r0 of the globule are chosen so as to match the number
unit lengthn(z):

pr 0~z!2r05n~z!. ~8!

The self-potential-energy of the globule is

F5
q

2 E r~r ,z!f~r ,z!d3r , ~9!

wheref is the electrostatic potential, a solution to Poisso
equation

¹2f524pqr~r ,z!. ~10!

In the Appendix we show for a long thin globule fo
which

dr0~z!

dz
!1 and r 0~z!!D. ~11!

whereD is the distance to surrounding~if any!, thatF can be
expressed in terms ofn(z) and r 0(z) as a double integra
over z:

F5q2E
2`

`

dzFn~z!2

4
2
n~z!

2 E
0

`

dy lnS 2y

r 0~z! D ]

]y

3$y@n~z2y!G~z,z2y!1n~z1y!G~z,z1y!#%G . ~12!

One might hope that minimization ofF1Fe with respect
to n(z) would provide a well-defined result forn(z). How-
ever, the result depends onr 0(z), and in factF→` as
r 0(z)→0, since a line charge has infinite self-energy.

In physical terms, the number of particles per unit leng
in a fluid globule depends not only on the confining for
along thez axis, but also on the radial confining force. A
one increases the radial confining force in order to shrink
globule onto thez axis, the globule will become longer an
longer inz without limit. We therefore cannot use Eq.~12!
alone to determine the density per unit lengthn(z) of the
Coulomb chain.

As discussed in the Introduction, we also need to acco
for correlations, which are neglected in Eq.~12!. In order to
account for correlations we add and subtractF from the
exact energyE given by Eq.~1!, using Eq.~6! for the exter-
nal potential energy:

E5F1Fe1U, ~13!

where

U5q2(
i. j

G~zi ,zj !2F. ~14!

Now, U is the difference between the exact Coulomb se
energy of the chain, and the energy of a uniform fluid glo
ule with the same density per unit length, soU is an expres-
sion for the correlation energy of the system. We will no
obtain an approximate form for the correlation energyU
which is valid when Eq.~11! holds.
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Suppose that the Coulomb chain is infinitely long a
homogeneous inz. ThenU is the difference between th
energy of the chain and that of a uniform density cylind
The correlation energyUhom for this homogeneous system
can be determined analytically~see Refs.@8,9#!:

Uhom

N
5q2nFg2

1

4
1 lnS nr02 D G , ~15!

where g is Euler’s constant. Provided thatn and r 0 are
slowly varying, we can employ Eq.~15! to find U for a
nonuniform system in the local density approximation:

U5E
2`

`

dz n~z!
Uhom

N
~n! ~16!

or, substituting from Eq.~15!,

U5q2E
2`

`

dz n2~z!Fg2
1

4
1 lnS n~z!r 0~z!

2 D G . ~17!

Note that the correlation energy depends logarithmically
r 0. However, whenF andU are added together to obtain a
expression forE in Eq. ~13!, the dependence onr 0 vanishes
and the energy depends only on the density per unit len

E@n#5E
2`

`

dz n~z!H q2gn~z!2
q2

2 E
0

`

dy ln@yn~z!#
d

dy

3@yn~z2y!G~z,z2y!1yn~z1y!G~z,z1y!#

1qfe~z!J . ~18!

Here we have used the fact that limz8→zG(z,z8)51/uz
2z8u, and have performed an integration by parts.

Equation~18! is the main result of this paper. In the ne
section we minimizeE[n] in order to determine the energ
E and densityn(z) of the chain. However, before we do s
it may be instructive to evaluate Eq.~18! for a particular case
that can be compared to an exact result. For a Coulomb c
of finite length and uniform interparticle spacinga0, the
Coulomb self-energy is

E5
q2

a0
(
i51

N

(
j51

i21
1

u i2 j u
~19!

~we neglect the external potential and image charges for s
plicity!. The sums can be performed explicitly for largeN
@10#:

E5
q2

a0
~N21!Fg211 ln~N21!1OS ln N

N D G . ~20!

Let us compare this result to Eq.~18!. A uniform chain ofN
charges has lengtha0(N21) and densitya0

21 so, neglecting
image charges, Eq.~18! becomes
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TABLE I. Energy of Coulomb chains in a quadratic well@in units ofmv2(q2/mv2)2/3#.

N Esimulation E(N)a E(N)b E(N)c E(N)d

20 180.3 181.1 179.8 180.1 179.8
40 665.76 665.84 665.27 665.6 665.3
80 2389.71 2 393.9 2 389.2 2389.8 2 389.2
160 8414.2 8 424.6 8 413.9 8414.2 8 413.53

1 280 342 063.1 341 913.3 341 876.50
5 000 3 735 837.1 3 734 872.7 3 734 469.71
10 000 12 513 080.7 12 510 529.8 12 509 232.8

aEquation~26!.
bNumerical minimization of Eq.~29! ~same asM52 in Table II!.
cBest value, full numerical minimization, finite-difference method.
dBest value, full numerical minimization, Legendre expansion method~from Table II!.
g

i
-
-

in

u-
er
is

d

E~n!5q2E
0

a0~N21!

dzH ga0
222

a0
21

2

3F E
0

`

dy ln~ya0
21!

d

dy
@n~z2y!1n~z1y!#G J .

~21!

The derivatives ofn(z6y) created functions at the chain
ends, so the integral overy can be evaluated, after which the
z integral can be performed, yielding

E5
~N21!q2

a0
@g211 ln~N21!#. ~22!

This matches Eq.~20! to O~lnN/N!. When an external po-
tential is added we will see in the next section that the ener
functional also matches simulation results for the minimum
energy state to high accuracy.

III. DETERMINATION OF THE COULOMB CHAIN
DENSITY AND ENERGY IN THE LDA

In this section we minimizeE[n] using several different
techniques. First, we employ trial variational functions in
order to obtain analytic estimates for the energy and dens
of the chain. Next, we consider a full numerical minimiza
tion of the energy functional using two numerical tech
niques: expansion ofn(z) in basis functions, and finite dif-
ferencing. Finally, we consider the limit of largeN and
analytically expand the variational solution forn(z) in pow-
ers of 1/~lnN!. In each case we compare the results to mo
lecular dynamics~MD! simulations. For simplicity image
charge effects are neglected throughout, except in Sec. III

A. The method of trial variational functions

An approximate minimization of Eq.~18! can be accom-
plished by choosing an appropriate variational function fo
n(z) whose shape depends on one or more independent
rameters. The energy can then be minimized with respect
these parameters.

We will neglect image charges and assume a harmon
potential of the form given by Eq.~2!. In this case
y

ty
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G~z,z6y!5
1

uyu
.

One straightforward choice forn(z) that works reasonably
well involves a single parameterL @8#:

n~z!5H 34 N

L S 12
z2

L2D ,
0

uzu,L
otherwise, ~23!

L being the half length of the chain. The required integrals
E[n] can then be performed analytically, yielding

E5
1

10
Nmv2L21

3

5

q2N2

L Fg2
13

5
1 ln~6N!G . ~24!

Minimization of E with respect toL provides a relation be-
tweenL andN:

L3~N!53
q2N

mv2 S g2
13

5
1 ln~6N! D , ~25!

and use of this relation in Eq.~24! implies that the energy of
the chain is

E~N!5
3

10
Nmv2L2~N!. ~26!

For variousN valuesE(N) is compared to the simulation
results in Table I, and the density is compared to the sim
lation in Fig. 2. The energies are close, but are slightly larg
than the simulation results, and the length of the chain
slightly overestimated, although asN increases the percent-
age error decreases~slowly!.

An improved fit to the simulation results can be achieve
by using a more flexible trial variational function,

n~z!5 HA2Bz2,
0,

uzu<L
uzu.L. ~27!

The constraint that* 2L
L n(z)dz5N implies a relation be-

tween the parametersA, B, andL:

2L~A2BL2/3!5N, ~28!
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55 4021MINIMUM ENERGY STATE OF THE ONE-DIMENSIONAL . . .
so there are actually two independent variational parame
as opposed to only one in Eq.~23!.

The integrals in Eq.~18! can be performed analytically
yielding the following result forE[n]:

E5q2LH 2
62

15
A21L2Fmv2

q2 SA3 2
BL2

5 D
1
12

5
AB2

26

25
B2L2G1

32

15

A2

L
AA/B tanh21~AB/AL!

1S 2A22
4AB

3
L21

2B2L4

5 D $g1 ln@2L~A2BL2!#%J .
~29!

~To obtain this result one must take into account the den
discontinuities atz56L, which created functions in the
derivative ofn.!

Equation~29! can be minimized numerically for a give
value ofN by substituting forA in terms ofN, B, andL via
Eq. ~28!, and minimizing with respect toB andL. Results for
the energy are displayed in Table I, and the density is co
pared to the simulations in Fig. 2. There is a considera
improvement in the fit compared to the one-parameter va
tional function of Eq.~23!.

One might imagine that by choosing even more flexi
trial functions with more variational parameters, one co
further improve the accuracy of the fit. However, as we w
see in the next section, this is true only up to a certain po
since the convergence of the theory to the true energy
density turns out to be ‘‘asymptotic.’’ By this we mean th
a series of increasingly flexible variational functions co
verges only up to a certain point, beyond which the res
for n(z) and E diverge. However, we will see that asN
increases, more terms in the series can be kept before lo
convergence, and for largeN it is possible to determine th
energy and the density to high accuracy.

B. Numerical minimization of E†n‡

In order to numerically minimizeE[n], we first assume
that n(z) is nonzero only foruzu<L, whereL is the half
length of the chain, a parameter to be determined during
minimization procedure. We writeE[n] in terms of z̄5z/L,
ȳ5y/L, andn̄5n(q2/mv2)1/3 where (q2/mv2)1/3 is a scale
length associated with the harmonic potential:

E5
2q2L̄

~q2/mv2!1/3
E
0

1

dz̄ n̄~ z̄!S n̄~ z̄!$g1 ln@ n̄~ z̄!L̄#%

1
1

2 E
0

11 z̄
dȳ ln~ ȳ!n̄8~ z̄2 ȳ!

2
1

2 E
0

12 z̄
dȳ ln~ ȳ!n̄8~ z̄1 ȳ!1

1

2
L̄2z̄ 2D , ~30!

and whereL̄5L/(q2/mv2)1/3 andn̄8( z̄)5]n̄/] z̄. Here again
we have neglected image charges so thatG(z,z6y)51/uyu
and we have assumed the trap is harmonic for simplicity
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The scaled half lengthL̄ is determined by the condition
that the number of charges remains fixed during the mini
zation procedure:

L̄5NY E
21

1

dz̄ n~ z̄!. ~31!

We first perform the numerical minimization by means
a finite-difference scheme. We replace the functionn(z) by
the set of discrete valuesn(zi), z̄i5 i /M , i50,1,2,...,M . In
order to speed up the numerics we use the symmetry of
harmonic well to assumen(2 z̄)5n( z̄), and we also assum
n~1!50. The integral overz̄ is then performed using the
corrected composite trapezoid rule:

E
0

1

f dz̄5
1

M S (
i51

M21

f ~ z̄i !1
1

2
@ f ~0!1 f ~1!#

1
1

12M
@ f 8~0!1 f 8~1!# D , ~32!

where f ( z̄) is the integrand in Eq.~30!. Since symmetry
implies n8~0!50, one can show thatf 8~0!50; andn~1!50
implies f ~1!50. We replacef 8~1! by its finite-difference
form, f 8(1)5[ f (1)2 f ( z̄M21)]M52 f ( z̄M21)M .

We must also finite difference the integrals overȳ that
enter into f ( z̄). For those integrals we employ the unco
rected composite trapezoid rule,

E
0

16 z̄ i
g~ ȳ!dȳ5

1

M S (
j51

M6 i21

g~ ȳ j !1
1

2
@g~0!1g~16 z̄i !# D ,

~33!

whereg5ln ȳn8( z̄i6 ȳ), noting that the logarithmic diver-
gence ing~0! vanishes through a cancellation between
two integrals overȳ. The derivative ofn is evaluated using
the midpoint rule:

n8~zi !5
n~ z̄i11!2n~ z̄i21!

2~1/M !
, i51,...,M21

n8~0!50,

n8~1!52n~ z̄M21!/~1/M !. ~34!

For a given number of chargesN there areM variational
parameters,n( z̄i), i50,...,M21. Minimization of E[n]
with respect to theseM parameters can be performed usi
any numerical minimization routine.

Results for the energy as a function ofM are displayed in
Fig. 3 forN520, 40, 80, and 160 charges. AsM increases,
the energy is observed to converge to a value which i
good match to the simulation results~see Table I!; however,
whenM becomes too large the energy begins to diverge.
N increases, the range ofM over which energy converge
increases, and the energy can be determined to more sig
cant figures. The loss of convergence is a common prob
in local density approximations of Coulombic systems, a
is related to the onset of oscillations in the density. The
oscillations can be observed in Fig. 4 forN520 and 40,
which displays the density as a function of position co
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4022 55DANIEL H. E. DUBIN
pared to the MD simulations. ForN520 and 40 we also plo
the density for the values ofM that gives the best fit,M540
and 60, respectively. ForN580 and 160 no oscillations in
the density are apparent becauseM is not sufficiently large
to have lost convergence~M580 for these twoN values!.
One can see that the fit improves asN increases.

Lest the reader think that the oscillations inn(z) are re-
lated to a numerical instability in our finite-difference a

FIG. 3. Energy as a function of the number of pointsM kept in
the finite-difference method forN520, 40, 80, and 160. Energy i
units ofmv2(q2/mv2)2/3.

FIG. 4. Density as a function of position determined via t
finite-difference method, compared to the MD simulations
N520, 40, 80, and 160. Dashed lines:M580. Solid lines are the
values ofM giving the best fit,M540 for N520 andM560 for
N540. Bothz andn(z) scaled to (q2/mv2)1/3.
proach rather than to a fundamental property of the den
functionalE[n], we have also employed a second numeri
minimization technique. In this approach we expandn̄( z̄) in
the even Legendre polynomials:

n̄~ z̄!5 (
m50

M

AmP2m~ z̄!. ~35!

The coefficientA0 is determined by the normalization cond
tion Eq. ~31!,

A05
N

2L̄
, ~36!

so now there areM11 variational parameters,A1,
A2 ,...,AM , andL̄. Minimization of Eq.~30! is aided by the
fact that all of the required integrals overz̄ andȳ ~except for
*0
1dz̄ n̄ lnn̄! can be performed analytically.@Note that the
caseM51 corresponds to the trial function of Eq.~27!.#

Convergence to a limiting value of energy and density
M increases is quite rapid. However, ifM becomes too large
convergence is lost and oscillations inn̄( z̄) again ensue, jus
as in the finite-difference scheme~see Fig. 5!. Indeed, when
N is not large, the loss of convergence makes it difficult
determine the energy or the density beyond a certain a
racy. For example, whenN5160, Table II implies
E58413.5~60.1!, and the density matches the MD simul
tion well, but forN520 or 40 the energy does not conver
to a very well-defined value, and neither does the density
can be observed in Fig. 5.

However, the Legendre function technique is well suit
to consideration of very largeN values. We consider the

r

FIG. 5. Density as a function of position determined by t
method of basis functions, compared to MD simulations~open
circles! for N520, 40, 80, and 160, keeping different numbers
basis functions: forN520, M52–5; for N540, M52–6; for
N580, M52–7; for N5160, M52–8. For each value ofN the
dashed curve corresponds toM52 @same as Eq.~27!#. For M>3
the differentM values can be distinguished by noting that the de
sity at z5L increases asM increases. Bothz and n(z) scaled to
(q2/mv2)1/3.
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TABLE II. Energy @in units ofmv2(q2/mv2)2/3# as a function of the number of basis functionsM ~best
values in boldface!.

M N520 N540 N580 N5160 N51280 N55000 N510 000

2 179.80 665.270 2389.189 8413.924 341 913.280 3 734 872.736 12 510 529.84
3 179.76 665.242 2389.173 8413.535 341 878.863 3 734 503.176 12 509 345.31
4 179.38 665.061 2389.099 8413.526 341 876.692 3 734 474.936 12 509 252
5 178.62 664.720 2388.923 8413.444 341 876.504 3 734 470.699 12 509 237
6 664.144 2388.636 8413.288 341 876.501 3 734 469.886 12 509 233.982
7 2388.200 8413.056 341 876.488 3 734 469.724 12 509 233.1
8 8413.728 341 876.444 3 734 469.706 12 509 232.8
9 341 876.369 3 734 469.706 12 509 232.826
10 3 734 469.694 12 509 232.822
11 3 734 469.664 12 509 232.821
e

e

o

t
on

in

a

ne

n

casesN51280, 5000, and 10 000 in Table II. ForN51280
the value ofM giving the best convergence isM56, achiev-
ing eight figure accuracy in the resulting energy. Wh
N510 000, ten significant figure accuracy inE is achieved
for M511 ~the maximum value ofM that our code allowed!.
The densities for these three cases are shown in Fig. 6~on a
logarithmic scale!. Convergence to the limiting form may b
seen here by plottingn( z̄) for two values ofM , the best
value, and the best value minus one. Since there is no
servable difference inn(z) between the twoM values, we
may conclude that the densities shown have converged to
correct limiting form, even though there are no simulati
data with which to compare sinceN is too large to perform
simulations easily.

C. The largeN limit of the LDA

It is possible to obtain some analytic results forn(z) and
E(N) in the limit thatN→`. First we scalen, y, andz in the
following manner:

FIG. 6. Density as a function ofz for N51280, 5000, and
10 000. Solid curves are the results of the method of basis fu
tions. For eachN value two values ofM are plotted, the best value
and the best value minus one~see text!; the curves fall atop one
another. Dashed curves correspond to the largeN asymptotic form
of Eqs. ~48!, ~49a!, and ~53!. n(z) scaled toN/L ~0! whereL ~0! is
given by Eq.~47!, andz scaled to (q2/mv2)1/3.
n

b-

he

z̄5z/L, ȳ5y/L, n̄5nL/N, f̄e5feL/qN, ~37!

whereL is the half length of the chain. Assuming the cha
runs fromz52L to L, so thatn(z)50 for uzu.L, and keep-
ing image charge effects, the energy functional of Eq.~18!
can be written as

E@n#5
q2

L E
21

1

dz̄S n̄2~g1 lnN1 lnn̄!2
n̄

2 E
0

`

dȳ lnȳ
d

dȳ

3@ ȳḠ~ z̄,z̄1 ȳ!n̄~ z̄1 ȳ!1 ȳḠ~ z̄,z̄2 ȳ!n̄~ z̄2 ȳ!#

1n̄f̄eD , ~38!

whereḠ5LG.
We will perform a variation keeping*n dz5N5const, or

E
21

1

n̄ dz̄51. ~39!

This variation is most easily performed by adding
Lagrange multiplierl and minimizing the function

F@ n̄#5E@ n̄#2q2
l

L E
21

1

dz̄ n̄. ~40!

The variational equationdF/dn̄(x)50 then implies

@2g1112 lnn̄12 lnN#n̄1f̄e2l2E
0

`

dȳ lnȳ
d

dȳ

3@ ȳḠ~ z̄,z̄1 ȳ!n̄~ z̄1 ȳ!1 ȳḠ~ z̄,z̄2 ȳ!n̄~ z̄2 ȳ!#50,

uz̄u<1 ~41a!

and this equation, along with the condition

n̄~ z̄!50, uz̄u.1 ~41b!

determines the density.
We will solve Eq.~41! iteratively for n̄ in an expansion in

lnN. However, before we do so it is instructive to exami
one feature of the solution following from Eq.~41!: n̄(z) is

c-
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either continuous atz̄561, i.e., n̄~61!50, or elsen̄~61! is
singular. Ifn̄(z) is discontinuous atz̄561, the derivatives in
Eq. ~41a! imply that

@2g1112 lnn̄in12 lnN#n̄in1f̄e2l1n̄in~1!~12 z̄!Ḡ~ z̄,1!

3 ln~12 z̄!1n̄in~21!~11 z̄!Ḡ~ z̄,21!ln~11 z̄!

2E
0

11 z̄
dȳ lnȳ

d

dȳ
@ ȳḠ~ z̄,z̄2 ȳ!n̄in~ z̄2 ȳ!#

2E
0

12 z̄
dȳ lnȳ

d

dȳ
@ ȳG~ z̄,z̄1 ȳ!n̄in~ z̄2 ȳ!#50,

~42!

wheren̄in( z̄) is the solution forn̄( z̄) when uz̄u<1. However,
as z̄→61, the terms proportional to ln~16z! are singular, so
n̄in( z̄) is either infinite atz̄→61 or elsen̄in~61!50.
We will focus on the nonsingular solutions for whic

n̄in~61!50. Under this restriction iterative solutions of E
~41! can be constructed. We have scaled the density so th
is of O~1! asN→`. The lowest-order solution to Eq.~41! is
therefore

n̄~0!~ z̄!5
l2f̄e~ z̄!

2 lnN
, uz̄u<1. ~43!

The Lagrange multiplier is then determined by the condit
Eq. ~39!, so the lowest-order solution forl is

l~0!5 lnN1^f̄e&/2, ~44!

where^f̄e&5* 21
1 dz̄ f̄e( z̄). Thus to lowest order in~lnN!21

the density is

n̄~0!~z!5H 122
f̄e~ z̄!2^f̄e&/2

2 lnN
,

0,

uz̄u<1
uz̄u.1. ~45!

Note thatf̄e( z̄) depends on the half lengthL of the chain,
which we have not yet determined. For example, for
harmonic potential

f̄e~ z̄!5
mv2

2q2
L3z̄2

N
. ~46!

The length of the chain is determined by the condition t
n̄50 at z̄561. For the harmonic potential this conditio
together with Eqs.~45! imply that

L ~0!353N lnN
q2

mv2 , ~47!

the lowest-order solution for the half length of the chain. F
this half length the density becomes

n̄~0!5 3
4 ~12 z̄ 2!. ~48!

Note that Eq.~48! is equivalent to the trial function, Eq.~23!,
which explains why this trial function is a good choice for
plasma in a harmonic confinement potential.

Equations~45!, ~47!, and~48! apply even when there ar
surrounding conductors that create image charge effects.
t it

n

e

t

r

vi-

dently image charges affect the 1D chain only atO~1/lnN!.
The effect of image charges on the 1D chain can be ea
observed in MD simulations that include surrounding co
ductors. Figure 7 shows the equilibrium positions of
charges in a trap consisting of a harmonic external poten
as well as a spherical conducting shell of radiusR centered at
the origin. The Green’s function in this case
G(z,z8)51/uz2z8u2R/uR22zz8u. As one would expect in-
tuitively, the charges are attracted to their images in the c
ductor, slightly lengthening the chain. However, even wh
R is only slightly larger thanL the charge distribution is
almost the same as the caseR5`. This is different than for
2D or 3D plasmas, where the presence of nearby conduc
would strongly distort the charge distribution.

Improvements to Eq.~48! can be made in an asymptot
series in powers of~lnN!21. To next order, we write

n̄5n̄~0!1n̄~1!, ~49a!

l5l~0!1l~1!, ~49b!

L5L ~0!1L ~1!. ~49c!

The solution forn̄~1! follows from Eq.~41a!:

2 lnNn̄~1!1@2g1112 lnn̄~0!#n̄~0!1f̄e
~1!2l~1!

2E
0

11 z̄
dy lnȳ

d

dȳ
@ ȳḠ~ z̄,z̄2 ȳ!n̄~0!~ z̄2 ȳ!#

2E
0

12 z̄
dȳ lnȳ

d

dȳ
@ ȳḠ~ z̄,z̄1 ȳ!n̄~0!~ z̄1 ȳ!#50, ~50!

wheref̄e
(1)5f̄e(Z̄)uL5L(0)1L(1)2f̄e(Z̄)uL5L(0), or Taylor ex-

panding,

f̄e
~1!5L ~1!

]

]L
f̄e~ z̄!uL5L~0!. ~51!

Note that unlessn̄~0!~61!50, n̄~1! is infinite atz561; as we
discussed previously we therefore have chosenn̄~0!~61!50.

The Lagrange multiplierl~1! is determined by Eq.~39!,
which implies

FIG. 7. Effect of image charges on equilibrium positions, f
N540. Right half of chain displayed. Spherical conductor, of rad
R, centered at origin, is placed around the chain. Results for th
values ofR are shown. Distances are in units of (q2/mv2)1/3.
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E
21

1

n̄~1!dz̄50. ~52!

The correction to the half lengthL ~1! is determined by the
condition thatn̄~1!~61!50.

For the harmonic potential of Eq.~46!, and neglecting
image charges, one can substitute Eq.~48! into Eq. ~50! and
perform the integrals analytically. After some work, and af
applying the conditionsn̄~1!~61!50. and Eq.~52! we obtain
for the density

2~ lnN!n~1!5 3
4 ~12 z̄ 2!@2516 ln223 ln~12 z̄ 2!#,

~53a!

and for half length of the chain

~L ~0!1L ~1!!35
3Nq2

mvz
2 F ln~6N!1g2

7

2
1OS 1

lnND G .
~53b!

Equation ~53b! is similar to the expression for the ha
length, Eq. ~25!, derived using the trial function method
However, Eq.~53b! is a better~slightly shorter! approxima-
tion for the length, since it does not rely on an arbitra
choice for the form of a trial function. Equations~48! and
~53! provide the asymptotic form for the density and leng
of the chain in a harmonic trap neglecting image charges
an example we compare the asymptotic form for the den
to the N51280, 5000, and 10 000 data in Fig. 6, and
compare to the MD simulation forN5160 in Fig. 8.

Further improvements can be made by iterating the s
tion of Eq. ~41! in order to keep even higher-order corre
tions to the density in powers of~lnN!21. The interation can
be performed numerically, and we find that it provides e
cellent asymptotic convergence to the numerical simulatio
For example, Fig. 8 shows the result keeping up to the s
iterate, which is very close to the simulation results
N5160. However, as in the numerical work of Sec. III B, t
convergence is only asymptotic: if too many iterates are k
the solution begins to oscillate.

IV. THE SQUARE-GRADIENT APPROXIMATION

In Eq. ~18! the local density approximation was used
the energy functional. This approximation employs the c
relation energy per particle of a homogeneous Coulo
chain, Eq.~15!, in order to determine the correlation ener
U of the inhomogeneous chain@see Eq.~16!#. To see what is
left out in making this approximation, and how one mig
systematically improve on the LDA, consider an infini
Coulomb chain, initially homogeneous with densityn0, to
which is added a small density oscillation:

n~z!5n01A sin~kz!, ~54!

wherek is the wave number of the oscillation. We will de
termine the effect of this oscillation on the energy of t
chain in two ways. First, we can determine the energy
expanding an exact expression for the chain energy in p
ers ofA. Second, we will employ our energy functional, E
~18!. Comparing these two results will tell us what the LD
has left out, and how we might improve on it.
r
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The exact Coulomb energy of the chain is

E5(
i , j
j, i

q2

uz~ i !2z~ j !u
. ~55!

Now, a small oscillation in the density of the chain is equiv
lent to an oscillation in the position of the particles. To
precise, for largeN we can write a differential equation re
lating the density to the positionz( i ) of particle i , based on
Eqs.~3! and ~5!:

n~z!51/~dz/di !. ~56!

Solution of this differential equation yields

i ~z!5n0z
A

k
cos~kz!, ~57!

which can be inverted to obtainz( i ) to O(A2):

z~ i !5a0i1
Aa0
k

cos~ka0i !S 12
A

k
sin~ka0i ! D1O~A3!,

~58!

wherea051/n0 is the average interparticle spacing. To fir
order in A one can see that there is an oscillation in t
interparticle spacing, as one would expect since the den
is oscillating inz.

Using Eq.~58! in Eq. ~55! and again expanding inA to
quadratic order, one finds that for an infinite chain the ter
linear inA cancel by symmetry and the energy is

E5E012~N21!
q2A2

a0
3k2 (

j51

`
sin2~ka0 j /2!

j 3
, ~59!

whereE0 is the energy of the uniform chain, given by E
~20! for large N. The O(A2) term is the potential energy
associated with a phonon of wave numberk.

FIG. 8. Density as a function ofz for N5160. Dots: MD simu-
lation results. Dashed curve: largeN asymptotic form@Eqs. ~48!,
~49a!, and ~53!#. Solid curve: numerically iterated solution of Eq
~41!, showing sixth iterate. Bothz andn(z) scaled to (q2/mv2)1/3.
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Assuming thatka0 is small, so that the wavelength of th
inhomogeneity is long compared to an interparticle spac
one can expand the sum in Eq.~59! to obtain

E5E012~N21!q2A2a0

3F14 S 322 ln~ka0! D1
1

144 S ka02 D 21••• G . ~60!

We will now compare this expression to the expression
tained from Eq.~18!. Substituting Eq.~54! into Eq.~18!, and
keeping only terms up to quadratic order inA, one performs
the integrals over a chain of finite lengthL5(N21)a0.
Then takingL→` and keeping only terms ofO(L) one finds
that the energy is

E5E01
~N21!

2
q2A2a0S 322 ln~ka0! D . ~61!

Note that this expression, which employs the LDA, is nea
the same as the exact expression, Eq.~60!, but misses the las
term in the square brackets. This term, ofO(k2), along with
the other terms in the series of even higher order, is miss
from the LDA. By keeping thisO(k2) term in the energy we
may improve the convergence of the energy functional to
actual energy. This extra energy can be expressed in term
a derivative of the density:

DESGA5
q2

144 E dzS 1n ]n

]zD
2

, ~62!

where we have kept terms only to lowest order inA. This
extra energy is associated with variations in the density,
is similar to a term appearing in the energy of inhomog
neous fluids and referred to as the square-gradient app
mation~SGA! or the van der Waals approximation@11#. In a
fluid it provides an approximation to the interfacial ener
due to surface tension. It is positive since surface tens
always increases the energy of a stable interface.

Equation~61! shows that the LDA neglects terms propo
tional to gradients of the density. Thus, for slowly varyin
densities, the LDA is a good approximation, as expect
Also, adding Eq.~61! to the energy functional should help t
suppress oscillations in the density that occurred in the L
since such oscillations increaseDESGA. However, the coef-
ficient of 1

144 in Eq. ~61! is rather small, so we find that it doe
not stop the oscillations; it merely reduces their magnitu
An example is shown in Fig. 9 for the case ofN520 par-
ticles, a case for which oscillations are easily apparent in
LDA ~see Fig. 4!. We have addedDESGA to the energy func-
tional of Eq.~18! and have minimized the energy using t
finite-difference method described in Sec. III B. AsM in-
creases the density oscillations are suppressed but not e
nated compared to Fig. 4, where only the LDA was e
ployed in the energy functional. For larger values ofN and
for M&100 the density in the SGA was found to be almo
identical to the LDA results.

V. DISCUSSION

In order to describe the minimum energy states of in
mogeneous 1D Coulomb chains confined by external fie
g,

-

y

g

e
of

d
-
xi-

n

d.

A

.

e

i-
-

t

-
s,

we have developed an energy functional@Eq. ~18!# based on
the local density approximation. When minimized, this e
ergy functional provides the energy and density per u
length as a function of position. The results were compa
to molecular dynamics simulations and were found to be
good agreement with the simulations provided that the nu
ber of particles in the chain was sufficiently large. Of cour
in present experiments a few dozen charges at most
trapped in the chain; and the determination of the equi
rium can be easily performed via molecular dynamics sim
lations such as those described in Sec. II. The density fu
tional theory is valuable forN@1, when MD simulations are
difficult to perform. Such large chains may be realized
future experiments since some possible applications suc
atomic clocks@3,4#, quantum computers@5#, and bunched
crystallized beams in storage rings@12# appear to favor large
N.

One-dimensional Coulombic matter was observed to h
a property that distinguishes it from other Coulombic sy
tems: both the mean-field and correlation energies mus
kept when determining equilibrium properties; unlike 2D a
3D plasmas, correlation effects influence the density
scales large compared to an interparticle spacing. As a c
sequence, image charges due to surrounding conductors
shown to have only a small effect on the charge distribut
of a 1D Coulomb chain. As we discussed in the Introducti
this balance between correlation and mean-field effects
occurs in higher-dimensional systems. In two dimensions
1/r 2 potential has this property, as does the 1/r 3 potential in
three dimensions.

In the future we intend to extend the present work
study finite-temperature effects in the 1D chains. Presuma
the equilibrium density is affected by the pressure associa
with random thermal motions of the particles, and a dens
functional theory based on minimization of free energy c
be developed to describe this behavior.

FIG. 9. Density as a function ofz using the square-gradien
approximation forN520 and for three values ofM . Both z and
n(z) scaled to (q2/mv2)1/3.
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APPENDIX: MEAN-FIELD ENERGY
OF A UNIFORM GLOBULE

In this appendix we evaluate a general expression for
mean-field self-energy of a uniform fluid globule of dens
r0. We assume that the globule is cylindrically symmet
and thin: its radiusr 0(z) is small compared to the distance
the surrounding electrodes,D, and slowly varying as a func
tion of axial positionz. The density and radius are chosen
equal a given number per unit lengthn(z),

pr 0~z!2r05n~z!. ~A1!

The electrostatic potential is then

f~r ,z!5qr0E
0

2p

du8E
2`

`

dz8E
0

r0~z8!
r 8dr8G~r ,r 8!.

~A2!

We will eventually be interested in values ofr andz within
the globule, souz2z8u is much greater than bothr and r 08
except for a small range ofz8 values nearz, uz2z8u,e where
n
h

e

e is a distance chosen such thatr 0(z)!e!D. We therefore
split the integral overz8 into two parts; one running ove
uz2z8u,e and one overuz2z8u.e:

f~r ,z!5qr0E
0

2p

du8E
z2e

z1e

dz8E
0

r0~z8!
r 8dr8G~r ,r 8!

1qr0E
0

2p

du8E
2`

z2e

dz8E
0

r0~z8!
r 8dr8G~r ,r 8!

1qr0E
0

2p

du8E
z1e

`

dz8E
0

r0~z8!
r 8dr8G~r ,r 8!.

~A3!

In the last two integralse is sufficiently large so that we
can replaceG~r ,r 8! by G(z,z8), the Green’s function evalu
ated along thez axis. Ther 8 and u8 integrals can then be
performed.

In the first integral in Eq.~A3!, r and r 8 are sufficiently
close together to neglect the conducting walls, and then
can approximateG by its vacuum form,

G~r ,r 8!5
1

ur2r 8u
5

1

A~z2z8!21r 21r 8222rr 8cosu8
.

The r 8 integral can then be done exactly. Putting together
three terms we have
by
f~r ,z!5qr0E
0

2p

du8E
z2e

z1e

dz8FAr 222rr 08cosu81r 08
21~z2z8!22Ar 21~z2z8!2

1r cosu8lnS Ar 222rr 08cosu81r 08
21~z2z8!21r 082r cosu8

Ar 21~z2z8!22r cosu8
D G

1pqr0S E
z1e

`

dz8r 08
2G~z,z8!1E

2`

z2e

dz8r 08
2G~z,z8!D , ~A4!

wherer 085r 0(z8) and r 05r 0(z).
The integrals overu and fromz2e to z1e in the first term can be performed asymptotically in smalle @noting thatr and

r 0 are also ofO~e!# and the result is

f~r ,z!5pqr03H r 0
2~z!2r 21r 0

2ln4e2/r 0
21E

e

`

dy@r 0
2~z1y!G~z,z1y!1r 0

2~z2y!G~z,z2y!#, r,r 0~z!

r 0
2ln4e2/r 21E

e

`

dy@r 0
2~z1y!G~z,z1y!1r 0

2~z2y!G~z,z2y!#, r.r 0~z!

~A5!

where we have made the replacementsy5z82z andy5z2z8, respectively, in the last two integrals of Eq.~A4!.
The integral overy is infinite ase→0 sinceG(z,z6y)→1/uyu asy→0. However, thee dependence can be canceled out

a mathematical trick. If one multiplies and divides byy in the integrand and then integrates by parts, a lne term appears,
canceling the lne term in Eq.~A5!. One can then takee→0 and obtain a finite result:

f~r ,z!5pqr03H r 0
2~z!2r 22E

0

`

dy lnS 2y

r 0~z! D d

dy
$y@r 0

2~z2y!G~z,z2y!1r 0
2~z1y!G~z,z1y!#%, r,r 0

2E
0

`

dy lnS 2yr D d

dy
$~y@r 0

2~z2y!G~z,z2y!1r 0
2~z1y!G~z,z1y!#%, r.r 0 .

~A6!
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Note that the form of the potential as a function ofr is the same as that of an infinite cylinder of radiusr 0: it is quadratic in
r within the plasma and logarithmic outside the plasma. This form for the potential is valid only when bothr andr 0 are small
compared both to the gradient scale length ofr 0(z) and the distance to the electrodes.

Finally, the energyF of the globule follows from the general formula

F5 1
2qE rf d3r5 1

2qr02pE
2`

`

dzE
0

r0~z!

r drf~r ,z!.

Performing ther integral yields

F5q2E
2`

`

dzF14 n2~z!2
n~z!

2 E
0

`

dy lnS 2y

r 0~z! D d

dy
$y@n~z2y!G~z,z2y!1n~z1y!G~z,z1y!#%G , ~A7!

where we have employed Eq.~A1! to expressr 0
2(z) in terms ofn(z).
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